
[Mangla, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [407]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

RECOVERY AND USER PRIORITY BASED LOAD BALANCING IN CLOUD

COMPUTING
 Er. Rajeev Mangla *, Er. Harpreet Singh

* Computer Science and Engineering, Swami Vivekanand Institute of Engineering and Technology, India

ABSTRACT
Cloud Computing becomes an important aspect in computer science. For systematic use of the cloud, an efficient

load balancing algorithm is required for scheduling the tasks in a well organized and logical manner. The Min-Min

algorithm is an efficient approach to enhance the total completion time of the tasks. The major shortcoming is, it let

load imblanced on the resources. This drawback can be removed by using an improved load balancing Min-Min

algorithm (LBIMM). User priority- an another aspect, which plays a vital role in terms of pay-per-use base. Cloud

providers offers different type of QoS to put up the demands for different type of users. To provide the guarantees,

load balancing algorithm must consider User Priority and Failure Recovery. Availability is considered as the

growing and reoccurring concern in software intensive systems. PA-LBIMM considers user priority and seeks to

minimize the total completion time.It fails to define, what will happen if a resource fails/crashes? To remove this

constraint, a failure recovery policy is proposed in this paper. So that, if a resource fails then the tasks must be

rescheduled to achieve minimum completion time. At last, the introduced policy is simulated using Matlab toolbox.

The results show that the policy can led to significant rise in performance of the resource utilization.

KEYWORDS: Cloud Computing; Load Balancing; Recovery Policy; PA-LBIMM Algorithm; Makespan; Task

Scheduling.

 INTRODUCTION
Cloud Computing is a resourceful technology which

has a great potential to provide dynamic services on

large and scalable vitualized resources over the

network [1][2]. Cloud is a mishmash of various

homogenous as well as heterogenous resources which

subject to fulfill the requirements of the cloud user

and load balance the usage of the resources for the

cloud providers [12]. Various characteristics such as

On demand self-service, Resource pooling, Multi-

tenancy, Rapid elasticity, etc. must be possessed by a

cloud [8],[9]. In order to efficiently utilize the

resources of the cloud, an efficient load balancing

and scheduling algorithm is required. In this paper, a

recovery policy is proposed which describes the

action to be taken when a resource fails.

In a cloud environment, tasks are submitted by clients

to the scheduler. The Scheduler check for the

availability of the resources. Then scheduling is done

on the resources according to the task’s

requirements[3]. Now, tasks are ready to be executed.

After execution results are provided to the users as a

reply from the cloud. Scheduling tasks efficiently is a

challenge as clouds can be heterogenous in nature by

architecture, resource providers and consumers,

operating system, etc.[7]. Problem arises when a

resource under execution or ready state fails. The

users must wait for the results until the resource

recover from failure and become ready to execute the

task. It may led to large task queues which a cloud

provider never wants. The main purpose of

scheduling algorithm is to decrease the completion

time of all the submitted tasks, efficiently utilize the

resources and provide an effective failure recovery

policy[11]. Min-Min algorithm enhances the

completion time but didn’t able to do proper load

balancing [6]. LBIMM enhances the overall

completion time, do load balancing efficienlty but

never considers user-priority [7]. PA-LBIMM

considers user priority and minimize the completion

time according to user priority. In pay-per-use base,

cloud users may be offered with different level of

services i.e. VIP level or Ordinary level. Availability

is the growing and reoccurring concern in software

intensive systems as there is always the probability of

the system failure. A system failure can take place

due to various factors i.e. may be of operational

http://www.ijesrt.com/

[Mangla, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [408]

deadlock, power failure, security breeches or due to

some other reasons. In the above discussed

algorithms, No algorithm considers resource failure

[6]. To provide the guaranteed service, Resource

failure must be considered during execution of the

tasks as availability is the main concern in cloud

computing [10].

Recovery policy ensures the availability of the

resources to the users even under the condition of

resource failure. According to the simulated reults,

the proposed policy outperform the other algorithms

which never uses this recovery policy in terms of

makespan. The remaining part of the paper is

organized as follows: Section II presents outline of

the previous work about task scheduling algorithm

with emphasis on Min-Min, LBIMM and PA-

LBIMM. Section III, the proposed recovery policy is

introduced. In Section IV, the implementation and

results are given. Finally, Section V concludes the

paper and presents future works.

RELATED WORK
As described in section I, Uniqueness of the

resources in the cloud made it more challenging to do

scheduling. A number of algorithms were discussed

in the literature review. Tracy D et al [11] have

studied the various scheduling algorithms such as

Minimum Completion Time (MCT), Minimum

Execution time (MET), Min-Min, Max-Min, etc. The

result shows that Min-Min algorithm execute the

tasks in minimum makespan which means it produces

a better schedule than others. Huankai Chen et al [7]

studied the Traditional Min-Min algorithm and

considered it as a base algorithm to propose Load

Balance Improved Min-Min scheduling algorithm

(LBIMM) and User-Priority Awared Load Balance

Improved Min-Min scheduling algorithm (PA-

LBIMM). To test the results a simulation basis is

also provided.

TRADITIONAL MIN-MIN SCHEDULING

ALGORITHM

Min-Min algorithm is a simple algorithm that starts

with an unmapped task set S [4]. Resource R with

minimum completion time for tasks in the set S is

selected from the available resources. Then the

smallest task T from S is assigned to the

corresponding resource R. T is removed from the task

set S and the procedure is repeated until task set S is

empty [5].

 Various steps of Min-Min algorithm are

represented in Fig. 1. Assume we have task set

S=(T1, T2, T3 ….Tx) of x tasks, which we want to

schedule over y resources (R1, R2…….Ry). Expected

completion time Ctij produced by resource j (1≤ j≤ y)

for task i (1≤ n ≤x) is calculated as in (1)

Ctij=Etij + Rtj (1)

 Here Etij denotes time required by task Ti to

execute on resource Rj. Rtj represents ready time of

the resource Rj.

Figure 1: Traditional Min-Min Scheduling Algorithm

 A major weakness of Min-Min algorithm is that it

emphasizes on the minimum completion time of all

the tasks without considering work load on each

resource [4]. This led some resources busy all the

time and other may be ideal.

LOAD BALANCE IMPROVED MIN-MIN

SCHEDULING ALGORITHM (LBIMM)

 LBIMM algorithm is enhanced form of Min-Min

algorithm. LBIMM improves the load balancing

which is a major weakness in case of Min-Min

algorithm [7]. LBIMM stresses to remove the load

unbalance and to minimize the execution time of

each resource effectively.

 LBIMM algorithm’s pseudo code is represented in

Fig 2. As it is based on Min-Min algorithm, therefore

it executes Min-Min at first step. It then searches for

the most heavily loaded resource and the smallest

task allotted to that resource. Then the completion

time is calculated for that task on all other resources.

Then the makespan produced by Min-Min is

compared with minimum completion time of that

task. If completion time is less than makespan then

the task is reassigned to that resource which

produces it. The ready time is updated for both

resources. This process repeats until the makespan

produced by the heavy load resource becomes less

than completion time on the newly selectled resource.

In this way, load balancing is achieved and LBIMM

Step 1: For tasks in set S; Ti

Step 2: For all respources; Rj

Step 3: Ctij=Etij + Rtj; End For; End For;

Step 4: Do while tasks set is not empty

Step 5: Find task Tk that cost minimum

execution time.

Step 6: Assign Tk to the resource Rj which gives

minimum expected complete time

Step 7: Remove Tk from the tasks set

Step 8: Update ready time rtj for select Rj

Step 9: Update Cij for all Ti

Step 10: End Do

http://www.ijesrt.com/

[Mangla, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [409]

produces a schedule reduces the overall completion

time [7].

Figure 2: Load Balance Improved Min-Min Scheduling

Algorithm (LBIMM)

USER-PRIORITY AWARED LOAD BALANCE

IMPROVED MIN-MIN SCHEDULING

ALGORITHM (PA-LBIMM)

No user-priority is taken into consideration in both

Min-Min and LBIMM algorithms. For cloud to be a

pay-per-use base, User’s must be isolated from each

other. Huankai Chen et al [7] proposed a user-priority

based PA-LBIMM algorithm.

PA-LBIMM separate the tasks into G1 and G2

groups. The tasks submitted by VIP user’s or high

priority user’s are considered as group G1 and tasks

submitted by low priority user’s are considered as

group G2. Tasks are scheduled to the resources on

the priority basis. Firstly, For all the tasks in G1, each

task is assigned to the VIP category resource by using

Min-Min. Then each task in G2 group is assigned to

all the resources by using Min-Min. Now, load

balancing function of LBIMM algorithm is executed

to load balance all the resources. In this way, an

optimal load balanced schedule is generated[7]. The

pseudo code for PA-LBIMM scheduling algorithm is

given in Figure 3.

PA-LBIMM outperforms both LBIMM and Min-Min

as per discussion and results discussed in the

literature of Huankai Chen et al [7]. So, this

algorithm can be considered for the further study and

research work can be done by considering PA-

LBIMM.

Figure 3: User-Priority Awared Load Balance Improved

Min-Min Scheduling Algorithm (PA-LBIMM)

PROPOSED WORK
In this paper, a recovery policy is proposed which

helps the cloud scheduler to reschedule the tasks if a

resource fails at the time of execution to achieve the

minimum makespan.

Step 1: For tasks in set S; Ti

Step 2: For all respources; Rj

Step 3: Ctij=Etij + Rtj; End For; End For;

Step 4: Do while tasks set is not empty

Step 5: Find task Tk that cost minimum

execution time.

Step 6: Assign Tk to the resource Rj which gives

minimum expected complete time

Step 7: Remove Tk from the tasks set

Step 8: Update ready time rtj for select Rj

Step 9: Update Cij for all Ti

Step 10: End Do

Step 11: Do while the most heavy load resource

is considered, no need of rescheduling

Step 12: Find the task Ti that has minimum

execution time on heavy load resource Rj

Step 13: Find the minimum completion time of

Ti produced by resource Rk

Step 14: If minimum completion time (Rk) <

makespan

Step 15: Reassign Task Ti to Resource Rk

Step 16: Update ready time of both Rj and Rk

Step 17: End If; End Do;

Step 1:Divide the task set S into two groups VIP

G1 and Ordinary G2 agreeing to the user-priority

demand

Step 2: For all submitted tasks of G1group

Step 3: For all VIP resources; Rj

Step 4: Ctij=Etij+rtj;

Step 5: End For; End For;

Step 6: Do while tasks set is not empty

Step 7: Find task Tk with minimum execution

time.

Step 8: Assign Tk to the VIP resource Rj which

gives minimum expected completion time

Step 9: Remove Tk from the S

Step 10: Update ready time rtj for selected Rj

Step 11: Update Cij for all Ti

Step 12: End Do

Step 13: For all submitted tasks of G2 group

Step 14: For all resources; Rj

Step 15: Ctij=Etij+rtj;

Step 16: End For; End For;

Step 17: Do while tasks set is not empty

Step 18: Find task Tk with minimum execution

time.

Step 19: Assign Tk to resource Rj which gives

minimum expected completion time

Step 20: Remove Tk from the S

Step 21: Update ready time rtj for selected Rj

Step 22: Update Cij for all Ti

Step 23: End Do

Step 24: Do while the most heavy load resource

is considered, no need of rescheduling

Step 25: Find the task Ti that has minimum

execution time on heavy load resource Rj

Step 26: Find the minimum completion time of

Ti produced by resource Rk

Step 27: If minimum completion time (Rk) <

makespan

Step 28: Reassign Task Ti to Resource Rk

Step 29: Update ready time of both Rj and Rk

Step 30: End If; End Do;

http://www.ijesrt.com/

[Mangla, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [410]

Recovery Policy

According to this policy, First of all, scheduler looks

for the failed resource Rfj. All the tasks that were

scheduled by PA-LBIMM to execute on Rfj will be

considered as a task set Sf. Now, ready time rtfj

(which is equal to the time span between the start of

the execution on the resource and time of failure

occurrence) for the failed resource is calculated. So,

the completion time of the tasks in task set Sf become

equal to the sum of previous completion time on that

resource (Ctij) and ready time (rtfj).

FCtij=Ctij+rtf j (2)

One task Tk from the set Sf is selected and it’s

completion time is calculated on all the resources (

Here completion time on other resources is equal to

the sum of their makespan and execution time of the

task Tk on that resource). The task Tk will be assigned

to the resource Rk which produces minimum

completion time. Ready Time of both Rfj and Rk will

be updated. The task Tk is removed from the set Sf.

The procedure will be repeated until the task set Sf

becomes empty. The psudo code is given in Figure 4.

Figure 4: Recovery Policy Based User-Priority Awared

Load Balance Improved Min-Min Scheduling Algorithm

(RPA-LBIMM)

An Illustrative Example of RPA-LBIMM

Scheduling Algorithm

Assume we have a setup of three available resources

to which various users can submit their tasks.

Suppose five tasks have been submitted by users.

Table 1, represents represents the id, size and the user

group of each task. Table 2, represents the id,

processing speed and service level/type of each

resource. Data present in Table 1 and Table 2 is used

to calculate the expected execution time and

completion time of each task on each of the

resources.
Table 1. Task Specification

Task_Id
Task Size

(MB)
User Group

T(1) 100 Ordinary

T(2) 150 Ordinary

T(3) 200 Ordinary

T(4) 250 VIP

T(5) 500 Ordinary

Table 2. Resource Specification

Resource_Id
Resource

Speed (Mbps)
Type

R(1) 20 VIP

R(2) 16 Ordinary

R(3) 10 Ordinary

Table 3. Execution Time of Tasks on Each of the

Resources by PA-LBIMM Scheduling Algorithm

Task/

Resource

VIP-

R(1)
R(2) R(3)

T(4) - VIP 15.625

T(1) 6.25

T(2) 15

T(3) 12.5

T(5) 25

Figure 5: Gantt Chart: PA-LBIMM

Table 4. CompletionTime by PA-LBIMM Scheduling

Algorithm After Failure of Resource R(2)

Task/

Resource

VIP-

R(1)
R(2) R(3)

T(4) - VIP 19.625

T(1) 25.875

0 10 20 30 40

VIP- R(1)

R(2)

R(3)
T(4) - VIP

T(1)

T(2)

T(3)

T(5)

Step 1: For tasks in set S; Ti

Step 2: For all respources; Rj

Step 3: Ctij=Etij + Rtj; End For; End For;

Step 4: Do while tasks set is not empty

Step 5: Apply PA-LBIMM

Step 6: If resource failure occurs

Step 7: For tasks in set Sf; Tk

Step 8: For all respources; Rfi

Step 9: FCtij=Ctij+rtf j;

Step 10: End For; End For;

Step 11: Find the minimum completion time of

Tk produced by resource Rk

Step 14: If minimum completion time (Rk) <

completion time of (Rfi)

Step 15: Reassign Task Tk to Resource Rk

Step 16: Update ready time of both Rfj and Rk

Step 17: End If;

Step 18: End If;

Step 19: End Do;

http://www.ijesrt.com/

[Mangla, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [411]

T(2) 15

T(3) 38.375

T(5) 25

Figure 6: Gantt Chart: PA-LBIMM After Failure of

Resource R(2)

Table 5. CompletionTime of Tasks on Each of the

Resources by RPA-LBIMM Scheduling Algorithm

Task/

Resource
VIP- R(1) R(2) R(3)

T(4) - VIP 19.625

T(2) 15

T(5) 25

T(3) 35

T(1) 25

Figure 7: Gantt Chart: RPA-LBIMM

According to the Table 5, the makespan produced by

RPA-LBIMM is 35 seconds which is less than the

makespan produced by PA-LBIMM i.e. 38.375

seconds (as in Table 4) which is an important

improvement. The makespan decreases by 8.88%.

Thus RPA-LBIMM algorithm outperforms the PA-

LBIMM whenever a resource failure occurs.

RESULTS
To evaluate the rate of increase in efficiency, the

experiment is done considering various scenarios.

The Scenerios depend upon the time of failure of the

resource. Resource may fail:

A) Before the start of execution of the tasks

scheduled to that resource.

B) At the time of execution.

C) After the execution of the tasks scheduled to

that resource.

So, experimental testing is performed on these all

three scenerios.

Makespan can be considered as the throughput of the

cloud system. It can be calculated as:

Makespan= max(rtj) (3)

Here, rtj denotes ready time of the resource after

scheduled. The less the makespan, the better is the

throughput.

In scenario A, the failure time can be considered as

zero. So, it will not effect the makespan as resource

will be in ready state at the time of execution starts.

In scenario B, assume the resource failure occur after

2 seconds of the start of execution. Consider the time

required by resource to be ready again is 2 seconds.

This scenerio is discussed in Table 4 and Table 5.

The makespan reduces significantly by 8.88% as in

Figure 8. So, RPA-LBIMM clearly outperformed the

PA-LBIMM.

Figure 8: Gantt Chart: Makespan

In scenario C, the failure occurs after all the tasks

executed completely. So, it will not effect the

makespan as no task is in waiting state.

CONCLUSION AND FUTURE WORK
RPA-LBIMM proposed in this paper can be used to

achieve high throughput in case of resource failure.

Matlab simulation was used to evaluate the new

algorithm under all possible scenerios. RPA-LBIMM

produced the makespan of 35 seconds, which is 3.375

seconds less than makespan produced by PA-

LBIMM. So, the makespan is improved by 8.88% by

RPA-LBIMM.

This paper is concerned with the recovery from the

failure, load balancing , makespan and user-priority

for task scheduling in Cloud environment. Various

0 10 20 30 40

VIP- R(1)

R(2)

R(3)
T(4) - VIP

T(1)

T(2)

T(3)

T(5)

0 10 20 30 40

VIP- R(1)

R(2)

R(3)
T(4) - VIP

T(2)

T(5)

T(3)

T(1)

0
5

10
15
20
25
30
35
40

PA-LBIMM RPA-LBIMM

Makespan

http://www.ijesrt.com/

[Mangla, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [412]

scheduling algorithms such as, Round Robin,

Sufferage, First Come First Serve can be devised.

Many issues remain open. QOS requirement, the

heterogeneity of the resources and many other issues

that can be topics of future research. Tasks are

independent in this paper, but they may have some

precedence relations in real-life situation. We will

study and improve RPA-LBIMM for such kinds of

tasks in the future.

REFERENCES
[1] Tushar Desai, Jignesh Prajapati, “A Survey

Of Various Load Balancing Techniques And

Challenges In Cloud Computing” in

INTERNATIONAL JOURNAL OF

SCIENTIFIC & TECHNOLOGY

RESEARCH VOLUME 2, ISSUE 11,

NOVEMBER 2013 ISSN 2277-8616

[2] Klaithem Al Nuaimi, Nader Mohamed,

Mariam Al Nuaimi and Jameela Al-Jaroodi,

“A Survey of Load Balancing in Cloud

Computing: Challenges and Algorithms” in

2012 IEEE Second Symposium on Network

Cloud Computing and Applications

[3] Mayanka Katyal, Atul Mishra, “A

Comparative Study of Load Balancing

Algorithms in Cloud Computing

Environment” in International Journal of

Distributed and Cloud Computing Volume 1

Issue 2 December 2013.

[4] Kobra Etminani , Mahmoud Naghibzadeh,

Noorali Raeeji Yanehsari, “ A Hybrid Min-

Min Max-Min Algorithm With Improved

Performance”.

[5] Xiaogao Yu, Xiaopeng Yu, “A New Grid

Computation-based Min-Min Algorithm” in

2009 Sixth International Conference on

Fuzzy Systems and Knowledge Discovery

[6] T. Kokilavani, Dr. D.I. George

Amalarethinam, “Load Balanced Min-Min

Algorithm for Static Meta-Task Scheduling

in Grid Computing” in International Journal

of Computer Applications (0975 – 8887)

Volume 20– No.2, April 2011.

[7] Huankai Chen, Professor Frank Wang, Dr

Na Helian, Gbola Akanmu, “User-Priority

Guided Min-Min Scheduling Algorithm For

Load Balancing in Cloud Computing”.

[8] J.Srinivas, K.Venkata Subba Reddy,

Dr.A.Moiz Qyser, “CLOUD COMPUTING

BASICS” in International Journal of

Advanced Research in Computer and

Communication Engineering Vol. 1, Issue 5,

July 2012.

[9] Qi Zhang, Lu Cheng, Raouf Boutaba,

“Cloud computing: state-of-the-art and

research challenges” in J Internet Serv Appl

(2010) 1: 7–18 DOI 10.1007/s13174-010-

0007-6

[10] Zenon Chaczko, Venkatesh Mahadevan,

Shahrzad Aslanzadeh and Christopher

Mcdermid, “Availability and Load

Balancing in Cloud Computing” in 2011

International Conference on Computer and

Software Modeling IPCSIT vol.14 (2011) ©

(2011) IACSIT Press, Singapore

[11] Tracy D, Braun, "A comparison of eleven

static heuristics for mapping a class of

independent tasks onto heterogeneous

distributed computing systems" Journal of

Parallel and Distributed computing , Volume

61, Issue 6, Pages 810 – 837, 2001

[12] Bhushan Lal Sahu, Rajesh Tiwari, “A

Comprehensive Study on Cloud Computing”

in International Journal of Advanced

Research in Computer Science and Software

Engineering, Volume 2, Issue 9, September

2012 ISSN: 2277 128X.

Author Biblography

Rajeev Mangla

received BEng degree in

computer science in 2012 from

Punjab Technical University.

Currently, studying for a

master degree on Computer

Science and Engineering in the

Swami Vivekanand Institute

of Engineering and

Technology, Punjab Technical

University, India. Main

research interests include

cloud computing, load

balancing strategy and routing

strategy.

Harpreet Singh

received MEng degree in

computer science in 2013 from

Punjabi University. Currently,

working as an Assistant

Professor in Department of

Computer Science and

Engineering , Swami

Vivekanand Institute of

Engineering and Technology,

India. Main research interests

include cloud computing and

image noise removal.

http://www.ijesrt.com/

